

International Medical Education Trust – Palestine

Diabetes Mellitus in Clinical Practice

Dr. Muhieddin Omar

Dr. Raed Abu Sham'a

Definition of Diabetes

- It is a group of <u>metabolic diseases</u> characterized by hyperglycemia resulting from defects of <u>insulin secretion and/or increased cellular resistance to insulin</u>.
- Chronic hyperglycemia and other metabolic disturbances of DM lead to longterm tissue and organ damage as well as dysfunction.

Type 2 diabetes the modern epidemic

- Type 2 diabetes is a major clinical and public health problem.
- ▶ It is estimated that in the year 2000, 171 million people worldwide had type 2 diabetes
- ▶ In Palestine, the prevalence of diabetes between 9 13% of the population.

Diabetes in the UK is increasing

Prevalence: Age

Prevalence of Persons with Diabetes Aged 18 Years and Older by Age Group, 2007

Source: Behavioral Risk Factor Surveillance System, Health Statistics Section, CDPHE

www.imet2000-pal.org

Pregnancy & Diabetes

Percent of Women with Diabetes During Pregnancy by Age Group, 2004-2006

Adult Incidence of Diabetes in US

Annual Newly Diagnosed Cases

Source: SEARCH for Diabetes in Youth Study.

Liese et al. Pediatrics. 2006:188:1510-1518.

How we

Diagnose Diabetes?

Criteria for the diagnosis of DM

1. Symptoms of diabetes plus

random plasma glucose

concentration >200 mg/dL.

2. Fasting plasma glucose >126

mg/dL. (Fasting for at least 8 h.)

Criteria for the diagnosis of DM

3. Two-hour plasma glucose >200 mg/dL

during an OGTT (75 g).

4. HbA1c > 6.5% (ADA in 2010)

Diagnosing Diabetes Using A1C

- Diabetes diagnosed when A1C ≥6.5%
 - ► Confirm with a repeat A1C test
 - ► Not necessary to confirm in symptomatic persons with PG >200 mg/dL
- If A1C testing not possible, use previous tests
- Can not be used during pregnancy because of changes in red cell turnover

www.imet2000-pal.org

Diagnosing Diabetes Using A1C

A1C ≥6.0% should receive preventive interventions (pre-diabetes)

► A1C: reliable measure of chronic glucose levels; values vary less than FPG and testing more convenient for patients (can be done any time of day)

Justifications for the new recommendations

- ► Ease of testing- non fasting, one time
- Reproducibility
- Reliability
 - Less variable than FBG that has <u>6-10%</u> intra-individual variability and the 2h PG that has variability up to <u>15%</u>
 - Diabetes Care

Who should be screened for diabetes

► All individuals >45 years

If normal, repeat every 3 years

Consider testing at a younger age or more frequently for high-risk individuals

HIGH-RISK Individuals

►Obese (BMI >27 kg/m²)

Having a first-degree relative with DM

► High-risk ethnic population

HIGH-RISK Individuals

- Delivered a baby weighing >4 kg or gestational DM
- ► Hypertensive (>140/90 mmHg)
- ► Having HDL-C <35 mg/dL and/or a Triglyceride >250 mg/dL
- ▶ IGT or IFG on previous testing

In clinical settings . . .

The FPG is preferred over the OGTT due to:

- **▶**Ease of administration
- ► Convenience, patient acceptability
- **▶Lower cost**

Can we prevent or delay the onset of

Diabetes?

Pre-diabetes

- "Impaired glucose tolerance"
- Nearly 1 in 5 people have pre-diabetes
- 70% Increased risk of developing diabetes during your lifetime

Risk of Doing NOTHING

Complications

Complications

Complications

www.imet2000-pal.org

Summary of major diabetes prevention studies

Study	Intervention	Relative risk reduction (%)
Finnish DPS	Diet and exercise	58
Diabetes Prevention Program	Diet and exercise Metformin	58 31 (53% if obese)
STOP-NIDDM	Acarbose	36
TRIPOD	Troglitazone	56
DREAM	Rosiglitazone	60
	Ramipril	NS

Who should start the prevention

Individuals with impaired fasting glucose and impaired glucose tolerance and any of the following:

- <60 years of age
- BMI >35 kg/m²
- Family history of diabetes in first-degree relatives
- Elevated triglycerides
- Reduced HDL cholesterol
- Hypertension
- Hemoglobin A1C >6.0%

Positive Lifestyle Changes

Can **Delay** or **Prevent** Type 2 Diabetes

Modest Changes in Diet

Moderate Physical Activity

Reach and Maintain a Healthy Weight

These steps can reduce the development of diabetes by 58 % !

Strategies for prevention of type 2 diabetes

1. Weight loss of 5 - 10%

2. Physical activity ~ 30 min/day

3. Metformin [some patients]

The Plate Method

Strategies for prevention of type 2 diabetes (Con...)

- Monitoring for the development of diabetes should be performed every <u>1-2</u> <u>years</u>.
- Close attention and treatment for other CVD risk factors.
- Drug therapy should not be routinely used to prevent diabetes.
- However, metformin could be used cautiously in selected patients.

Management of Diabetes

Type 2 Diabetes: A Progressive Disease

Pre-diabetes: Insulin Resistance

Onset Diabetes:
Beginning of
Insulin Deficiency

Diabetes: insulin Deficiency

Lifestyle Interventions

Medical Nutrition Therapy
Alone
or
with Medications

Medical Nutrition Therapy

Medications

Insulin

Meds

Goals for Glycemic Control

Hemoglobin A1C < 7%

Preprandial glucose 90–130 mg/dL (5.0–7.2 mmol/L)

2 h postprandial glucose < 180 mg/dL (<10 mmol/L)

Goals for Lipid Control

Low-density lipoprotein

< 100 mg/dL

Triglycerides

< 150 mg/dL

High-density lipoprotein

>40 mg/dL(>

Goals for BP Control

< 130/80 mmHg

Stepwise Management of Type 2 Diabetes

How to follow up your diabetic patient?

Assessment guidelines

EVERY VISIT

- Blood pressure
- Weight
- Visual foot examination

QUARTERLY

Hemoglobin A1C

<u>BIANNUAL</u>

Dental examination

Assessment guidelines

ANNUALLY

- Albumin/creatinine ratio (unless proteinuria is documented)
- ► Pedal pulses and neurologic examination
- Eye examination (by ophthalmologist)
- Blood lipids

Correlation of A1C with Average Glucose

	Mean plasma glucose	
A1C (%)	mg/dl	
6	126	
7	154	
8	183	
9	212	
10	240	
11	269	
12	298	

Glycemic Control

- ▶ Each 1% reduction in mean HbA1c was associated with:
 - ▶ 21% for deaths related to diabetes
 - ▶ 14% for myocardial infarction
 - ▶ 37% for microvascular complications

Stratton IM, Adler AI, Neil HA, et al BMJ 2000 Aug 12;321(7258):405-12 Non-insulin agents in the management of type 2 diabetes

Effectiveness of agents on A1C levels

Class (example)	Approximate A1C reduction (%)	
Biguanides (metformin)	0.9-2.5	
Sulfonylureas (glipizide, glyburide, glimiperide, others)	1.1-3.0	
Glinides (repaglinide, nateglindide)	1.0-1.5	
Thiazolidinediones (pioglitazone, rosiglitazone)	1.5-1.6	
α-Glucosidase inhibitors (acarbose, miglitol)	0.6-1.3	
Gliptins (sitagliptin)	0.8	
GLP-1 analogs (exenetide)	0.8-0.9	
Amylin analogs (pramlintide)	0.4-0.6	nation WV

www.imet2000-pal.org

Potential treatment algorithm for patients with diabetes

Therapy	Advantages	Disadvantages
Initial therapy		
Recommended		
Decrease body weight and increase	Improves CVD risk	Difficult to achieve and
physical activity	factors	maintain
AND		
Metformin	No hypoglycemia	GI side effects
(Choose if no contraindications)	Weight loss/neutral	
	Inexpensive	

Potential treatment algorithm for patients with diabetes

Therapy	Advantages	Disadvantages
Alternative to metformin		
Insulin	Most effective	Injections
(Choose if very hyperglycemic,	Relatively inexpensive	Monitoring
ketotic, thin and/or losing weight)		Hypoglycemia
		Weight gain

Potential treatment algorithm for patients with diabetes

Second agent (in addition to intial therapy)

Recommended

Sulfonylurea Inexpensive Hypoglycemia

Weight gain

OR

GLP-1 analog No hypoglycemia Injections

Weight loss GI side effects

Expensive

OR

Gliptin No hypoglycemia Limited long-term data

Expensive

OR

Thiazolidinedione No hypoglycemia Weight gain

CHF

Increased fracture risk

Possible increased CVD risk

Expensive

in the Management of Type

2 Diabetes

Figure 4.1 Normal insulin secretion and action

INET 2000 PAL
International Medical Education Trust – Palestin
www.imet2000-pal.org

Profiles of available insulins

Approximate duration of action of insulin preparations

Insulin	Onset of action	Peak action	Effective duration
Rapid-acting			
Insulin aspart	5-15 min	30-90 min	<5 h
Insulin lispro	5-15 min	30-90 min	<5 h
Insulin glulisine	5-15 min	30-90 min	<5 h
Insulin inhalation powder	5-15 min	30-90 min	5-8 h
Short-acting			
Regular insulin	30-60 min	2-3 h	5-8 h
Intermediate-acting			
NPHinsulin	2-4 h	4-10 h	10-16 h
Long-acting			
Insulin glargine	2-4 h	None	20-24 h
Insulin detemir	3-8 h	None	6-23 h

www.imet2000-pal.org

Combination between

Insulin and other

antihyperglycemics

Insulin initiation and titration algorithm

	Start with 10 IU/day bedtime basal insulin* and adjust weekly		
Mean of self-monitored FPG values from preceding 2 days Increase of insulin dosage		Increase of insulin dosage (IU/day)	
	≥180 mg/dL (10 mmol/L)	8	
	140-180 mg/dL (7.8-10.0 mmol/L)	6	
	120-140 mg/dL (6.7-7.8 mmol/L)	4	

100-120 mg/dL (5.6-6.7 mmol/L)

Potential strategy for insulin initiation and advancement

- 1 Start 10 units NPH, glargine or detemir at bedtime*
- 2 Continue metformin. Stop all other antihyperglycemic medications.
- 3 Have patient check daily FBG
- 4 Increase insulin doses according to Figure 4.4
- 5 If A1C meets goal (usually <7%), continue with single daily injection of insulin

Potential strategy for insulin initiation and advancement

- 6 If A1C is above goal, and FBG has been 100–120 mg/dL for at least 2 months, have patient check BG before breakfast, lunch, dinner, and bedtime Initiate 1–3 additional insulin injections per day, according to the following:
 - if pre-lunch BG is above 180 mg/dL (10 mmol/L), add pre-breakfast insulin aspart, lispro or glulisine
 - if pre-dinner BG is above 180 mg/dL (10 mmol/L), add pre-lunch insulin aspart, lispro or glulisine
 - if pre-bedtime BG is above 180 mg/dL (10 mmol/L), add pre-dinner insulin aspart, lispro or glulisine

Conclusions

- Many, if not most, patients with type 2 diabetes will eventually require insulin to achieve their glycemic goals.
- Insulin should be offered to patients as a safe and effective treatment option, not as a punishment

Conclusions

- Insulin doses must be <u>adjusted frequently</u> until the patient achieves the desired target.
- Treatment is initiated with a single bedtime injection of basal insulin and the dose is titrated until the <u>fasting glucose is normal</u>.

Conclusions

- If the <u>fasting glucose normalizes</u> but the <u>A1C remains elevated</u>, additional injections, typically given as <u>pre-meal doses</u> of rapid-acting insulin, may be required.
- Patients with long-standing diabetes and non-obese, frequently may require multiple daily insulin injections.

Take Home Points

- When Oral Agents Fail, Add Basal Insulin While Continuing Orals
- ► Titrate Basal Insulin *Rapidly* To Normalize FBS
- When FBS Normal But A1C Elevated, Add
 Mealtime Bolus Insulin One Meal At A Time &
 Withdraw Sulfonylurea when All Meals Covered
- Don't Forget The ABC's

Complications of Diabetes

Biology of microvascular complications of diabetes

Lowering A1C reduces complications in type 1 and type 2 diabetes

	DCCT	Kumamoto	UKPDS
A1C reduction	9% to 7%	9% to 7%	8 % to 7 %
Retinopathy ↓	76%	69%	17-21%
Neuropathy ↓	50%	Significantly improved	-
Macrovascular disease \	41%	_	16%

Risk reduction with treatment of diabetes

	Microvascular events	Macrovascular events
Blood pressure treatment	20-40%	20-50%
Lipid treatment	_	25-55%
Glucose treatment	12-35%*	10-20%*

Diabetic Nephropathy

- Optimize glucose control
- Optimize blood pressure control
- ► Limit protein intake
- ► Test for microalbuminuria
- Measure serum creatinine annually
- Treat with either ACE inhibitors or ARBs

Definitions of abnormalities in albumin excretion

Category

Normal <30

Microalbuminuria 30-299

Macroalbuminuria (clinical) ≥300

Monitoring and Preventing Hypertension

- ▶ BP should be measured at every routine diabetes visit.
- ▶ Patients with diabetes should be treated to a SBP <130/80 mmHg.
- Multiple drug therapy is generally required to achieve targets.

Monitoring and Preventing Hypertension

► Initial drug therapy for raised BP should be with ACE inhibitors or ARBs

All patients with diabetes and hypertension should be treated with a regimen that includes either an ACE inhibitor or an ARB.

Monitoring Lipid Levels

- In adults, test for lipid disorders at least annually and more often if needed to achieve goals.
- <u>Lifestyle modification</u> including reduction of saturated fat and cholesterol intake, weight loss, and increased physical activity.
- In individuals without overt CVD, the primary goal is an LDL <100 mg/dL. In those with overt CVD, the goal is <70 mg/dL.

Monitoring Lipid Levels

- For those over the age of 40 years, statin therapy to achieve an <u>LDL reduction</u> of 30-40% regardless of baseline LDL levels.
- ► Lower LDL cholesterol to <100 mg/dL
- Lower triglycerides to <150 mg/dL</p>
- ► Raise HDL cholesterol to >40 mg/dL.
- In women, an HDL goal should be >50 mg/dL.

Additional approaches to decrease CVD events

Antiplatelet agents

Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes with a history of CVD.

Use aspirin therapy (75–162 mg/day) as a primary prevention strategy

Combination therapy using other antiplatelet agents such as clopidogrel in addition to aspirin should be used in patients with severe and progressive CVD.

Smoking cessation

Advise all patients not to smoke.

Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care.

The Action to Control CardiOvascular Risk in Diabetes

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JUNE 12, 2008

VOL. 358 NO. 24

Effects of Intensive Glucose Lowering in Type 2 Diabetes

The Action to Control Cardiovascular Risk in Diabetes Study Group*

STUDY HYPOTHESIS:

A therapeutic strategy that targets HbA1c < 6.0% reduces the rate of CVD events more than a strategy that targets HbA1c 7.0% to 7.9%

ACCORD Glycemic Trial

10,000

Age-eligible, high risk people with type 2 diabetes

5,000 to Intensive Group (A1c Target < 6.0%) 5,000 to Standard Group

(A1c Target 7.0 -7.9%)

Treated and followed for > 4 years (mean 5.5 yrs)

MAJOR CVD EVENTS

ACCORD

- ▶ 257 Deaths In Intensive Arm
- 203 Deaths In Conventional Arm
- Not Due To Hypoglycemia
- Not Due To Medication

ACCORD: Primary Outcome

www.imet2000-pal.org

ACCORD: All-Cause Mortality

www.imet2000-pal.org

ADVANCE

Action In Diabetes And Vascular Disease:
Preterax And Diamicron MR Controlled Evaluation

► 11,140 Patients, Age ~66, With Type 2 DM, And High CV Risk

► Intensive (A1c 6.4%) vs Conventional (A1c 7%)

► No Excess Mortality In Intensive Group

ADVANCE: All-Cause Mortality

ADVANCE: Macrovascular Events

VADT Veterans Affairs Diabetes Trial

- Glycemic Control And CV Events
- ► Somewhat Less Intense Glycemic Separation (6.9% vs 8.4%)
- Optimal CV Risk Factor Control
- Completed May And Presented At The ADA June, 2008
- No Excess Mortality In Intensive Group

VADT: Primary Outcome

VADT: Total Mortality

www.imet2000-pal.org

VA Diabetes Trial End of Trial Median Values

	<u>BP</u>	LDL
VADT	127/69	72
ADVANCE	137/74	102

Conclusions

- The Overall Effect Of Glycemic Target On Macrovascular Events, If Any, Is Small
- Extremely Tight Glycemic Control In Very High Risk Patients Is Not Benign
- Lipid And BP Control, Smoking Cessation And Anti-platelet Therapy Remain Most Important For Reducing CVD Risk In Diabetes

A1c As Close to Normal Without Hypoglycemia And Goals Need to Be Individualized!

Relative Risk of Progression of Diabetic Complications

Glycemic control and complications UKPDS study

The patients agenda may not be yours!

So remember...

- ► Type 2 diabetes is largely asymptomatic and the treatments are inconvenient, impose on daily life and employment
- ► The patient's agenda may be very different from yours
- Lifestyle change is the most important but the most difficult to achieve
- In insulin-treated patients, hypoglycaemia is a major risk, especially in the young and elderly.

Summary

Most patients with type 2 diabetes still die of cardiovascular disease regardless of their blood glucose control.

Patients with highest HbA1c have most to gain from any improvement in blood glucose control

